MONOCYCLIC β-LACTAM ANTIBIOTICS: SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF 4-(SUBSTITUTED ETHYL)-2-AZETIDINONE-1-SULFONIC ACID DERIVATIVES

Haruo Yamashta, Nobuyoshi Minami and Kyoichi Sakakibara
Department of Chemistry, Research Laboratories, Teikoku Hormone Mfg. Co., Ltd., 1604 Shimosakunobe, Takatsu-ku, Kawasaki-shi, Kanagawa 213, Japan
Susumu Kobayashi and Masaji Ohno*
Faculty of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Masa Hamada and Hamao Umezawa
Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan
(Received for publication May 27, 1987)

Abstract

The synthesis and antibacterial activity of sodium ($3 S, 4 R$)-3-[2-(2-aminothiazol-4-yl)-(Z)2 -(O-substituted oxyimino) acetamido]-2-azetidinone-1-sulfonates having various substituted ethyl groups at the C-4 position are described. Among various substituents explored, the (substituted isothiuronio)ethyl groups were found to have strong antibacterial activity against a variety of Gram-negative bacteria, and moreover, the ethylene isothiuronium derivative exhibited moderate antibacterial activity against Staphylococcus aureus.

In our previous paper, we reported on the synthesis and antibacterial activity of sodium ($3 S, 4 R$)-3-[2-(2-aminothiazol-4-yl)-(Z)-2-(O-substituted oxyimino)acetamido]-4-(2-methoxyethyl)-2-azetidinone-1-sulfonates (1) ${ }^{1)}$. It has been shown that these compounds have strong antibacterial activity against a variety of Gram-negative bacteria and excellent stability against β-lactamases. However, they showed weak activity against Pseudomonas aeruginosa. With the view of further improvement of the antibacterial activity against P. aeruginosa, we synthesized a number of 1 -sulfo-2-azetidinones having various kinds of substituents at the $\mathrm{C}-4$ position.

In this paper, the synthesis and antibacterial activity of 4 -(2-substituted ethyl)-2-azetidinone1 -sulfonic acid derivatives (2) are described.

Chemistry

The synthesis of the 4-(2-hydroxyethyl) compounds ($\mathbf{5} \mathrm{A}^{12} \sim \mathbf{5 C}$), the key intermediates for various 4 -(substituted ethyl)-2-azetidinones, is shown in Scheme 1. Protection of the 7 -amino group of ($6 R, 7 S$)-7-amino-2,2-dimethyl-3-oxa-1-azabicyclo[4.2.0]octan-8-one (3) ${ }^{1)}$ gave 7-benzyloxycarbonylamino and 7-phthalimido derivatives

Fig. 1.

$1 \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$
$\mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{COONa}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COONa}$

$$
\mathrm{M}=\mathrm{Na}
$$

$2 \mathrm{R}_{1}=$ Substituted ethyl
$\mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{COOH}$
$\mathrm{M}=\mathrm{Na}$

Scheme 1.

A $\mathrm{R}=\mathrm{PhCH}_{2} \mathrm{OCONH}-$

C

Scheme 2.

e $\mathrm{R}_{1}=\mathrm{OCONH}_{2}$
$f \mathrm{R}_{1}=\mathrm{OPh}$
7A, 7 B
9A, 9B

A $\mathrm{R}=\mathrm{PhCH}_{2} \mathrm{OCONH}-$

B $R=$

TBDMS = tert - ButyldimethyIsilyI
($4 \mathbf{A}^{1)}$ and 4 B), which were treated with HCl in methanol to provide (4R)-4-(2-hydroxyethyl)-2azetidinones ($5 \mathrm{~A}^{1)}$ and 5 B), respectively. 3-Acylamino-4-(2-hydroxyethyl)-2-azetidinone (5C) was similarly prepared by acylation of 3 followed by removal of the acetonide.

Various 3,4-cis-4-(2-substituted ethyl)-2-azetidinone derivatives (8 and 9) were prepared from (5 A and 5 B) by converting the hydroxy group into various substituents (Scheme 2). Tosylation of 5A and 5B afforded 4-tosyloxyethyl compounds (6 A and $\mathbf{6 B}$), which were subsequently converted into 4-(2-chloroethyl) and 4-(2-iodoethyl) derivatives ($8 \mathbf{a}-\mathbf{A}$ and $\mathbf{8 b}-\mathbf{B}$), respectively. Then, compound $\mathbf{8 b - B}$ was treated with thiols followed by silylation with tert-butyldimethylchlorosilane to give the 4 -(2-substituted thioethyl) derivatives ($9 \mathrm{c}-\mathrm{B}$ and $9 \mathrm{~d}-\mathrm{B}$). On the other hand, O - and N -disilylation of 5A and 5B followed by regioselective desilylation with HCl in cold methanol gave the N-silylated alcohols (7A and 7B), respectively. The 4-(2-carbamoyloxyethyl) derivative (8e-A) was prepared by treating 7A with trichloroacetyl isocyanate followed by desilylation with tetra-n-butylammonium fluoride. The 4-(2-phenoxyethyl) derivatives ($9 \mathrm{f}-\mathrm{B} \sim 9 \mathrm{~h}-\mathrm{B}$) were obtained by the Mitsunobu reaction $^{2)}$ of 7B and phenols.

Deprotection of $\mathbf{8 A}$ and 9B followed by acylation with the mixed anhydride of 2-(2-chloroaceta-midothiazol-4-yl)-(Z)-2-methoxyiminoacetic acid $^{3)}$ and p-toluenesulfonyl chloride, followed by desilylation in the case of N-silylated compounds (10), afforded the 3-acylamino compounds (11). The 4-(2-acyloxyethyl) derivatives ($\mathbf{1 1 i}$ and $\mathbf{1 1 j}$) were synthesized by treating 5 C with acetyl chloride and chloroacetyl chloride, respectively. Then, sulfonation of these compounds (11) with sulfur trioxide

Scheme 3.

Scheme 4.

pyridine complex $\left(\mathrm{SO}_{3} \cdot \mathrm{Py}\right)$ gave the 1 -sulfo-2-azetidinone derivatives (12), which were subsequently converted into sodium 3-[2-(2-aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-(2-substituted ethyl)-2-azetidinone-1-sulfonates (13) by removing the chloroacetyl group of 12 with sodium N-methyldithiocarbamate ${ }^{3)}$. The 4-(2-sulfonatoxyethyl) derivative (13l) was similarly prepared from 5C by sulfonation and subsequent deprotection procedure (Scheme 3).

Moreover, various 4-(2-substituted ethyl)-1-sulfo-2-azetidinones ($\mathbf{1 8}$ and 20) were prepared from 4-iodoethyl derivatives (16A, 19A and 19B) by nucleophilic displacement (Scheme 4). Deprotection of 5 A and subsequent acylation with 2-(2-triphenylmethylaminothiazol-4-yl)-(Z)-2-(O-substituted oxyimino) acetic acid ${ }^{4>}$ and dicyclohexylcarbodiimide in the presence of 1 -hydroxybenzotriazole gave 3-acylamino-4-(2-hydroxyethyl)-2-azetidinones (14A and 14B). Mesylation of 14A and 14B gave the 4-(2 -mesyloxyethyl) compounds (15A and 15B), which were then transformed into the 4-(2-iodoethyl) derivatives (16A and 16B). 16A was treated with sodium azide, potassium cyanide and morpholine to give $17 \mathrm{a}, 17 \mathrm{~b}$ and 17 c , respectively. Then, 17 a was hydrogenated and subsequently acylated with acetyl chloride and benzoyl chloride to give the 4-(2-acylaminoethyl) derivatives (17d and 17e). Sulfonation of 17 with $\mathrm{SO}_{3} \cdot \mathrm{Py}$ and subsequent deprotection of triphenylmethyl group with 80% acetic acid, followed by treating with NaHCO_{3} in the case of $17 \mathrm{a}, 17 \mathrm{~b}, 17 \mathrm{~d}$ and 17 e , gave the deprotected products (18). On the other hand, sulfonation and subsequent deprotection of the triphenylmethyl group of 16 A and 16 B gave the sulfonates (19A and 19B), which were treated with thioureas and pyridine, followed by removal of the tert-butyl group with HCOOH in the case of 19 B , to give the various 4-(2-isothiuronioethyl) and 4-[2-(1-pyridinio)ethyl] compounds (20A and 20C).

Antibacterial Activity and Conclusions
The MIC values of the 4 -(2-substituted ethyl)-1-sulfo-2-azetidinones (13, 18 and 20) against S. aureus and a variety of Gram-negative bacteria were determined by the agar dilution method. Aztreonam ${ }^{5 \prime}$ was used as a reference compound.

Table 1 shows the antibacterial activity of 4-(2-substituted ethyl)-1-sulfo-2-azetidinones (13, 18 and 20). Most of these compounds showed good antibacterial activity against Gram-negative bacteria except P. aeruginosa. Among various 4-substituents tested, 4-(2-carbamoyloxyethyl), 4-(2-azidoethyl) and 4-(2-isothiuronioethyl) groups were found to be efficient substituents for the antibacterial activity. Especially, the 4-(2-isothiuronioethyl) derivative ($\mathbf{2 0 f} \mathbf{- A}$) showed strong antibacterial activity against

Table 1. Antibacterial activity of compounds 13, 18, 19 and $20(\mathrm{MIC}(\mu \mathrm{g} / \mathrm{ml}))$.

Compound No.	R	M	$\begin{aligned} & \text { S.a. } \\ & \text { FDA } \\ & 209 \mathrm{P} \end{aligned}$	$\begin{gathered} \text { E.c. } \\ \text { NIHJ } \\ \text { JC-2 } \end{gathered}$	$\begin{aligned} & K \cdot p . \\ & P C I \\ & 602 \end{aligned}$	S.m. IAM1184	$\begin{gathered} \text { E.cl. } \\ 963 \end{gathered}$	$\begin{aligned} & \hline \text { P.m. } \\ & \text { IFO } \\ & 3849 \end{aligned}$	$\begin{aligned} & \text { P.a. } \\ & \text { IFO } \\ & 3445 \end{aligned}$
13a	Cl	Na	>100	0.39	0.025	0.2	0.2	0.05	>100
13c	SEt	Na	>100	3.12	0.05	1.56	0.78	0.2	>100
13d	SM^{N}	Na	>100	1.56	0.025	0.78	0.39	0.1	>100
13e	OCONH_{2}	Na	>100	0.39	0.012	0.1	0.1	0.025	>100
13f	OPh	Na	>100	3.12	0.05	1.56	1.56	0.2	50
13g		Na	50	3.12	6.25	6.25	3.12	0.78	100
13h		Na	50	6.25	0.39	12.5	6.25	0.78	>100
13i	OAc	Na	>100	1.56	<0.2	0.78	0.78	<0.2	>100
13k	OH	Na	>100	6.25	3.12	6.25	6.25	6.25	>100
131	$\mathrm{OSO}_{3} \mathrm{Na}$	Na	>100	0.78	0.39	0.78	0.78	<0.2	>100
18a	N_{3}	Na	>100	0.39	0.025	0.2	0.1	0.05	>100
18b	SCN	Na	>100	0.78	0.025	0.2	0.2	0.05	>100
18c		-	>100	0.78	0.1	0.78	0.2	0.39	>100
18d	NHAc	Na	>100	0.39	0.05	0.2	0.2	0.1	>100
18e	NHCOPh	Na	>100	12.5	0.2	3.12	3.12	3.12	>100
19-A	I	Na	>100	1.56	0.012	0.39	0.39	0.05	>100
20f-A		-	100	0.1	0.1	0.05	0.1	0.1	50
20k-A		-	>100	0.2	0.2	0.2	0.2	0.2	100

Organisms included in the table are: S.a.; Staphylococcus aureus, E.c.; Escherichia coli, K.p.; Klebsiella pneumoniae, S.m.; Serratia marcescens, E.cl.; Enterobacter cloacae, P.m.; Proteus mirabilis, P.a.; Pseudomonas aeruginosa.

[^0]a variety of Gram-negative bacteria. In general, as the lipophilicity of the 4 -substituent increased, the compounds showed less activity against Gram-negative bacteria. Especially, introduction of an aromatic ring as a part of the substituent significantly decreased the activity against Gram-negative bacteria ($\mathbf{1 3 f}, \mathbf{1 3 g}, \mathbf{1 3 h}$ and $\mathbf{1 8 e}$). However, 131 showed only weak activity in spite of high hydrophilicity. These results agreed with those obtained for C-4-(substituted methyl) monobactams ${ }^{8 \sim 8}$.

As the isothiuronioethyl group was the most efficient substituent, various 4 -(2-substituted iso-thiuronioethyl)-1-sulfo-2-azetidinones (20) were synthesized. The biological results are shown in Table 2. These isothiuronium derivatives showed excellent antibacterial activity. N-Monomethylation of the amino group of thiourea resulted in an increase of the antibacterial activity, but N, N^{\prime} dimethylation decreased the activity (compare $20 \mathrm{~g}-\mathrm{A}$ and $20 \mathrm{~h}-\mathrm{A}$). Moreover, interestingly, N alkylated isothiuronium derivatives having the methoxyimino group as a part of the 3-acyl moiety ($\mathbf{2 0 g} \sim \mathbf{2 0 i}-\mathrm{A}$ and $\mathbf{2 0 j} \mathbf{- A}$) showed not only good antibacterial activity against Gram-negative bacteria but also moderate activity against Gram-positive bacteria, S. aureus. On the other hand, replacement of the methoxyimino group by the carboxymethoxyimino group resulted in an increase of the activity against Gram-negative bacteria, as expected. The N-methylisothiuronium derivative ($\mathbf{2 0 g}$-C) was more active than the corresponding 4 -(2-methoxyethyl) compound as previously reported ${ }^{1)}$, and showed nearly the same high activity as aztreonam. However, these isothiuronium derivatives were less active than aztreonam only against P. aeruginosa.

Despite the great efforts to introduce various substituents at the C-4 position, no compounds were found to have really sufficient activity against P. aeruginosa. However, we have found compounds having moderate activity against S. aureus as well as excellent activity against a variety of Gram-negative bacteria except P. aeruginosa.

Experimental

Melting points were measured on a Yanagimoto melting point apparatus and are uncorrected. Optical rotations were determined using a Jasco DIP-140 digital polarimeter. IR spectra were obtained on a Jasco IRA-1 or Hitachi 270-30 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Hitachi R-20A (60 MHz) or a Hitachi R-90H (90 MHz) spectrometer using TMS or 3-(trimethylsily)propionic acid sodium salt (TSP) as an internal standard. Secondary ion mass spectra (SI-MS) were measured on a Hitachi M-80B mass spectrometer. Silica gel (Wakogel C 200) was used for column chromatography.

In Vitro Antibacterial Activity

MICs were determined by the standard 2 -fold agar dilution method ${ }^{9)}$ using Mueller-Hinton agar (Difco) after 18 hours at $37^{\circ} \mathrm{C}$ with an inoculum size of $10^{6} \mathrm{cfu} / \mathrm{ml}$.
($6 R, 7 S$)-7-Phthalimido-2,2-dimethyl-3-oxa-1-azabicyclo-[4.2.0]octan-8-one (4-B)
NEFKENS' reagent ${ }^{10)}(6.56 \mathrm{~g}, 30 \mathrm{mmol})$ and triethylamine $\left(\mathrm{NEt}_{3}\right)(3.04 \mathrm{~g}, 30 \mathrm{mmol})$ were added to a solution of $3^{1)}(3.40 \mathrm{~g}, 20 \mathrm{mmol})$ in DMF (50 ml), and the mixture was stirred overnight at room temp. After further addition of Nefkens' reagent and NEt_{3} (each 10 mmol), stirring was continued for 24 hours at room temp. The solvent was removed under reduced pressure, and the residue was dissolved in $\mathrm{CHCl}_{3}(100 \mathrm{ml})$ and brine (50 ml). The separated organic layer was dried and concentrated under reduced pressure. Ether was added to the residue to give $4-\mathrm{B}^{*}(4.55 \mathrm{~g}, 77 \%)$ as colorless crystals. MP $206 \sim 207^{\circ} \mathrm{C}$.

[^1](6R,7S)-7-[2-(2-Chloroacetamidothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-2,2-dimethyl-3-oxa-1-azabicyclo[4.2.0]octan-8-one (4-C)

A mixture of $\mathbf{3}$ ($170 \mathrm{mg}, 1 \mathrm{mmol}$), 2-(2-chloroacetamidothiazol-4-yl)-(Z)-2-methoxyiminoacetic acid $^{3)}$ ($277 \mathrm{mg}, 1 \mathrm{mmol}$), 1-hydroxybenzotriazole ($135 \mathrm{mg}, 1 \mathrm{mmol}$) and dicyclohexylcarbodiimide ($206 \mathrm{mg}, 1 \mathrm{mmol}$) in DMF (5 ml) was stirred overnight at $0 \sim 5^{\circ} \mathrm{C}$. The precipitate was filtered off, and the filtrate was concentrated under reduced pressure. The residue was dissolved in EtOAc (20 ml) and washed successively with satd NaHCO_{3} and brine, dried and concentrated under reduced pressure. The residue was crystallized from MeOH - ether - hexane to give $4-\mathrm{C}^{*}(360 \mathrm{mg}, 83 \%)$ as colorless crystals. MP $180 \sim 190^{\circ} \mathrm{C}$ (dec).

(3S,4R)-3-Phthalimido-4-(2-hydroxyethyl)-2-azetidinone (5-B)

Compound 5 -B* was synthesized from 4-B by a similar method to that described in preparation of 5-A ${ }^{1)}$. Yield 92%. MP $191 \sim 192^{\circ} \mathrm{C}$.
(3S,4R)-3-[2-(2-Chloroacetamidothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-(2-hydroxyethyl)-2-azetidinone (5-C)
$2 \mathrm{~N} \mathrm{HCl}(2.5 \mathrm{ml})$ was added to a solution of $4-\mathrm{C}(470 \mathrm{mg}, 1.07 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{ml})$, and the mixture was stirred for 8 hours at room temp. The resulting precipitate was collected by filtration and washed with MeOH and water to give $5-\mathrm{C}^{*}$ ($338 \mathrm{mg}, 81 \%$) as a colorless powder.

($3 S, 4 R$)-3-Benzyloxycarbonylamino-4-(2-p-toluenesulfonyloxyethyl)-2-azetidinone (6 -A $)$

($3 S, 4 R$)-3-Benzyloxycarbonylamino-4-(2-hydroxyethyl)-2-azetidinone (5 -A) ($1.19 \mathrm{~g}, 4.5 \mathrm{mmol}$) was added to a solution of p-toluenesulfonyl chloride ($1.7 \mathrm{~g}, 9 \mathrm{mmol}$) in pyridine (10 ml) at $0 \sim 5^{\circ} \mathrm{C}$. After being stirred for 3 hours at the same temp, the reaction mixture was poured into EtOAc (50 ml) and ice-water (50 ml) and adjusted to pH 2 with 1 N HCl . Conventional work-up of the organic layer followed by crystallization from benzene - hexane afforded $6-\mathrm{A}^{*}(1.46 \mathrm{~g}, 77 \%)$ as colorless crystals. MP $124 \sim 125^{\circ} \mathrm{C}$.
(3S,4R)-3-Phthalimido-4-(2-p-toluenesulfonyloxyethyl)-2-azetidinone (6 -B)
Compound $6-\mathrm{B}^{*}$ was prepared from $5-\mathrm{B}$ by a similar method to that described in preparation of 6-A. Yield 92%. Colorless crystals. MP $93 \sim 94^{\circ} \mathrm{C}$.
(3S,4R)-3-Phthalimido-4-(2-hydroxyethyl)-1-tert-butyldimethylsilyl-2-azetidinone (7-B)
Compound 7-B* was synthesized from 5-B by a similar method to that described in preparation of 7-A ${ }^{1}$. Yield 75%. Colorless crystals. MP $142 \sim 143^{\circ} \mathrm{C}$.
(3S,4R)-3-Benzyloxycarbonylamino-4-(2-chloroethyl)-2-azetidinone (8a-A)
A mixture of $6-\mathrm{A}(800 \mathrm{mg}, 1.9 \mathrm{mmol})$ and lithium chloride ($640 \mathrm{mg}, 15 \mathrm{mmol}$) in $\mathrm{Me}_{2} \mathrm{CO}(20 \mathrm{ml})$ was refluxed for 5 hours, and the solvent was evaporated to dryness. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and brine (25 ml), and the separated organic layer was washed successively with 10% sodium thiosulfate and brine, dried and concentrated under reduced pressure. The residue was washed with ether to give $8 \mathrm{a}-\mathrm{A}^{*}$ ($502 \mathrm{mg}, 93 \%$) as colorless crystals. MP $171 \sim 173^{\circ} \mathrm{C}$.

($3 S, 4 R$)-3-Phthalimido-4-(2-iodoethyl)-2-azetidinone ($8 \mathrm{~b}-\mathrm{B}$)

Compound $\mathbf{8 b}$ - \mathbf{B}^{*} was synthesized from $\mathbf{6 - B}$ and sodium iodide by a similar method to that described in preparation of Sa-A. Pale yellow crystals. Yield 90%. MP $204 \sim 207^{\circ} \mathrm{C}$ (dec).

($3 S, 4 R$)-3-Benzyloxycarbonylamino-4-(2-carbamoyloxyethyl)-2-azetidinone (8e-A)

Trichloroacetyl isocyanate ($207 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added dropwise to a solution of ($3 S, 4 R$)-3-benzyloxycarbonylamino-4-(2-hydroxyethyl)-1-tert-butyldimethylsilyl-2-azetidinone (7-A) ${ }^{12} \quad(378 \mathrm{mg}$, $1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at $0 \sim 5^{\circ} \mathrm{C}$. After being stirred for 2 hours at room temp, tetra- n-butylammonium fluoride $\cdot \mathrm{XH}_{2} \mathrm{O}(400 \mathrm{mg})$ was added, and the reaction mixture was stirred for 1 hour at room temp. To this solution was added silica gel (10 g). After 1 hour at room temp, the mixture was chromatographed on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 10: 1\right)$ to give $8 \mathrm{e}-\mathrm{A}^{*}(270 \mathrm{mg}, 88 \%)$ as colorless crystals. MP $196 \sim 197^{\circ} \mathrm{C}$.

(3S,4R)-3-Phthalimido-4-(2-ethylthioethyl)-1-tert-butyldimethylsilyl-2-azetidinone (9c-B)

Ethyl mercaptan ($250 \mathrm{mg}, 4 \mathrm{mmol}$) was added to a solution of potassium hydroxide (123 mg , 2.2 mmol) in $\mathrm{MeOH}(5 \mathrm{ml})$. After being stirred for 30 minutes at $0 \sim 5^{\circ} \mathrm{C}$, a solution of $\mathbf{8 b}-\mathbf{B}$ (740 mg , 2 mmol) in DMF (5 ml) was added, and the resultant mixture was stirred for 30 minutes at the same temp. After being stirred overnight at room temp, AcOH (0.1 ml) was added to the reaction mixture. The solvent was removed under reduced pressure, and the residue was dissolved in DMF (20 ml). After adding tert-butyldimethylchlorosilane ($600 \mathrm{mg}, 4 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(400 \mathrm{mg}, 4 \mathrm{mmol})$ at $0 \sim 5^{\circ} \mathrm{C}$, the mixture was stirred overnight at room temp, and diluted with ether (100 ml) and brine (50 ml). Conventional work-up of the separated organic layer followed by chromatography on silica gel (ether hexane, $1: 1$) gave $9 \mathrm{c}-\mathrm{B}^{*}\left(615 \mathrm{mg}, 73 \%\right.$) as colorless crystals. MP $99 \sim 100^{\circ} \mathrm{C}$.
(3S,4R)-3-Phthalimido-4-[2-(1-methyl-1 A-tetrazol-5-yl) thioethyl]-1-tert-butyldimethylsilyl-2-azetidinone ($9 \mathrm{~d}-\mathrm{B}$)

Compound $9 \mathrm{~d}-\mathrm{B}^{*}$ was similarly synthesized described above by treating $\mathbf{8 b}$-B with sodium 1 -methyl-1 H -tetrazolyl-5-thiolate (prepared from 1-methyl-1 H -tetrazolyl-5-thiol and sodium hydride in DMF). Yield 76%. Colorless crystals. MP $147^{\circ} \mathrm{C}$.
(3S,4R)-3-Phthalimido-4-(2-phenoxyethyl)-1-tert-butyldimethylsilyl-2-azetidinone (9f-B)
To a mixture of $7-\mathbf{B}(374 \mathrm{mg}, 1 \mathrm{mmol})$, triphenylphosphine ($315 \mathrm{mg}, 1.2 \mathrm{mmol}$) and phenol (282 $\mathrm{mg}, 3 \mathrm{mmol}$) in anhydrous THF (10 ml) was added diethyl azodicarboxylate ($209 \mathrm{mg}, 1.2 \mathrm{mmol}$) at $0 \sim 5^{\circ} \mathrm{C}$ under nitrogen, and the mixture was stirred for 1 hour at the same temp. After removing the solvent, the residue was chromatographed on silica gel (ether-hexane, $1: 1$) to give $9 \mathrm{f}-\mathrm{B}^{*}$ (245 mg , 54%) as colorless crystals. MP $111 \sim 112^{\circ} \mathrm{C}$.

Compounds $9 \mathrm{~g}-\mathrm{B}$ and $9 \mathrm{~h}-\mathrm{B}$ were similarly prepared.
$9 \mathrm{~g}-\mathrm{B}^{*}$: Yield 67%. Colorless crystals. MP $167 \sim 168^{\circ} \mathrm{C}$.
$9 \mathrm{~h}-\mathrm{B}^{*}$: Yield 45%. Colorless crystals. MP $171 \sim 174^{\circ} \mathrm{C}$.
3-[2-(2-Chloroacetamidothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-(2-substituted ethyl)-2-azetidinones (11)

Method A: Procedure starting from 8-A; a mixture of 2-(2-chloroacetamidothiazol-4-yl)-(Z)-2-methoxyiminoacetic acid ($180 \mathrm{mg}, 0.64 \mathrm{mmol}$), p-toluenesulfonyl chloride ($124 \mathrm{mg}, 0.65 \mathrm{mmol}$) and NEt_{3} ($65 \mathrm{mg}, 0.64 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ was stirred for 50 minutes at $0 \sim 5^{\circ} \mathrm{C}$. On the other hand, a mixture of $8 \mathrm{a}-\mathrm{A}(90 \mathrm{mg}, 0.32 \mathrm{mmol}), 1 \mathrm{~N} \mathrm{HCl}(0.35 \mathrm{ml})$ and $5 \% \mathrm{Pd}-\mathrm{C}(30 \mathrm{mg})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ was stirred for 2 hours at room temp under a hydrogen atmosphere, and the catalyst was filtered off. The filtrate was concentrated under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ containing $\mathrm{NEt}_{3}(65 \mathrm{mg}, 0.64 \mathrm{mmol})$. This solution was added in one portion into the mixed anhydride solution prepared above, and the mixture was stirred for 2 hours at room temp. The resulting precipitate was collected by filtration and washed successively with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, water and MeOH to give $11 \mathbf{a}(115 \mathrm{mg}, 87 \%)$ as a colorless powder.

Compound 11e was prepared from $8 \mathrm{e}-\mathrm{A}$ by a similar method to that described above. Results are shown in Table 3.

Method B: Procedure staring from $9-\mathbb{B}$; (a) a mixture of $9 \mathbf{c - B}(259 \mathrm{mg}, 0.6 \mathrm{mmol})$ and methylhydrazine ($276 \mathrm{mg}, 6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml}$) was stirred for 1 hour at room temp, and the reaction mixture was subjected to chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$ to remove excess methylhydrazine. The eluent was concentrated under reduced pressure, and the residue was dissolved in $\mathrm{CHCl}_{3}(10 \mathrm{ml})$ and the mixture was stirred for 2 days at room temp. The resulting precipitate was filtered off, and the filtrate was concentrated to give the 3-amino compound (170 mg), which was acylated by a similar method to that described in preparation of 11 a to afford $10 \mathrm{c}(170 \mathrm{mg}, 54 \%)$ as a colorless powder.

Compounds $\mathbf{1 0 d}, \mathbf{1 0 f}, \mathbf{1 0 g}$ and $\mathbf{1 0 h}$ were similarly prepared described above. These compounds gave satisfactory physical data.
(b) To a solution of $10 \mathrm{c}(105 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{ml})$ was added $1 \mathrm{~N} \mathrm{HCl}(0.4 \mathrm{ml})$, and the mixture was stirred for 6 hours at room temp. The resulting precipitate was filtered off and washed

Table 3. Spectral and physical data of compounds 11.

Compound No.	Yield (\%)	$[\alpha]_{\mathrm{D}}^{22}$	$\begin{gathered} \text { IR (KBr) } \\ \beta \text {-lactam } \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	${ }^{1} \mathrm{H}$ NMR (solvent) $\delta(J=\mathrm{Hz})$
11a	$87^{\text {a }}$	$\begin{gathered} -11.0^{\circ} \\ (c 0.5, \mathrm{DMF}) \end{gathered}$	1755	(DMSO- d_{0}); $\left.1.75 \sim 2.05\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.64\left(2 \mathrm{H}, \mathrm{t}, J=7,4-\mathrm{CH}_{2} \mathrm{CH}\right)_{2}\right), 3.70 \sim 4.00(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.19(1 \mathrm{H}, \mathrm{dd}, J=5,9,3-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{s}$, thiazole$5 \mathrm{H}), 8.35(1 \mathrm{H}, \mathrm{br}$ s, lactam NH$), 9.32(1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH})$
11e	$39^{\text {b }}$	$\begin{gathered} +4.1^{\circ} \\ (c \mathrm{D}, \mathrm{DMF}) \end{gathered}$	1740	(DMSO- d_{3}); $1.17\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.50 \sim 1.85\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.40 \sim 2.60(2 \mathrm{H}, \mathrm{m}$, $\left.4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.49\left(2 \mathrm{H}, \mathrm{q}, J=8, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.60 \sim 3.90(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.34(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{ClCH}_{2}\right), 5.17(1 \mathrm{H}, \mathrm{dd}, J=5,9,3-\mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$), 8.32(1 \mathrm{H}$, br s, lactam NH$), 9.25$ ($1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH}$)
11d	$56^{\text {b }}$	$\begin{gathered} +1.1^{\circ} \\ (c \mathrm{D}, \mathrm{DMF}) \end{gathered}$	1755	(DMSO- d_{6}) ; $1.70 \sim 2.10\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.15 \sim 3.45\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.80 \sim 3.95(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.34\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.19(1 \mathrm{H}, \mathrm{dd}, J=5,9,3-\mathrm{H})$, $7.39(1 \mathrm{H}, \mathrm{s}$, thiazole-5H), $8.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \operatorname{lactam} \mathrm{NH}), 9.30(1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH})$
11e	$69^{\text {a }}$	$\begin{gathered} -1.1^{\circ} \\ (c \mathrm{D}, \mathrm{DMF}) \end{gathered}$	1765	(DMSO-d d_{6}); $1.55 \sim 1.95\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.65 \sim 3.90(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.96$ $\left(2 \mathrm{H}, \mathrm{t}, J=6,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.38\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.21(1 \mathrm{H}, \mathrm{dd}, J=5,9,3-\mathrm{H}), 6.48\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$, $7.44(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$), 8.36(1 \mathrm{H}, \mathrm{br}$ s, lactam NH$), 9.35(1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH})$
11 f	$42^{\text {b }}$	$\begin{gathered} -5.0^{\circ} \\ (c \mathrm{D}, \mathrm{DMF}) \end{gathered}$	1760	(DMSO- d_{6}) ; $1.75 \sim 2.10\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.75 \sim 3.95(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.02$ $\left(2 \mathrm{H}, \mathrm{t}, J=6,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.24(1 \mathrm{H}, \mathrm{dd}, J=5,9,3-\mathrm{H}), 6.80 \sim 7.00(3 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.15 \sim 7.40(2 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.43(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$), 8.42(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, lactam $\mathrm{NH}), 9.38(1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH})$
11g	$48^{\text {b }}$	$\begin{gathered} -0.8^{\circ} \\ (c \mathrm{c}, \mathrm{DMF}) \end{gathered}$	1750	$\left(\mathrm{DMF}-d_{6}\right) ; 1.90 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.95 \sim 4.20(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.30$ $\left(2 \mathrm{H}, \mathrm{t}, J=6,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.37(1 \mathrm{H}, \mathrm{dd}, J=5.5,9,3-\mathrm{H}), 7.18(2 \mathrm{H}, \mathrm{d}, J=9$, aromatic H$), 7.52(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$), 8.20(2 \mathrm{H}, \mathrm{d}, J=9$, aromatic H$), 8.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, lactam NH$)$, 9.22 ($1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH})$
11h	$19^{\text {b }}$	$\begin{gathered} -0.9^{\circ} \\ (c \mathrm{D}, \mathrm{DMF}) \end{gathered}$	1755	(DMF- d_{6}); $1.95 \sim 2.45\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.90 \sim 4.30(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.49$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 4.52\left(2 \mathrm{H}, \mathrm{t}, J=6,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5.40(1 \mathrm{H}, \mathrm{dd}, J=5,9,3-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{s}$, thiazole$5 \mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{d}, J=9$, aromatic H$), 8.25(1 \mathrm{H}$, br s, lactam NH$), 8.53(1 \mathrm{H}, \mathrm{dd}, J=3,9$, aromatic H), $8.78(1 \mathrm{H}, \mathrm{d}, J=3$, aromatic H$), 9.23(1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH})$
11i	80°	$\begin{gathered} -7.2^{\circ} \\ (c \mathrm{~B}, \mathrm{DMF}) \end{gathered}$	1750	(DMSO- d_{6}) ; $1.65 \sim 1.95\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.70 \sim 3.95(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.88$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.04\left(2 \mathrm{H}, \mathrm{t}, J=6.5, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.18(1 \mathrm{H}, \mathrm{dd}, J=5,9,3-\mathrm{H})$, $7.43(1 \mathrm{H}, \mathrm{s}$, thiazole $-5 \mathrm{H}), 8.34(1 \mathrm{H}, \mathrm{br}$ s, lactam NH$), 9.31(1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH})$
11j	$67^{\text {c }}$	$\begin{gathered} -3.1^{\circ} \\ (c 1, \mathrm{DMF}) \end{gathered}$	1760	(DMSO- d_{6}); $1.65 \sim 2.00\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.65 \sim 3.95(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.18$ ($2 \mathrm{H}, \mathrm{t}, J=6,4-\mathrm{CH}_{2} \mathrm{CH}_{2}$), $4.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 4.38\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.19(1 \mathrm{H}, \mathrm{dd}, J=5,9,3-\mathrm{H}), 7.44$ $(1 \mathrm{H}, \mathrm{s}$, thiazole-5H), $8.34(1 \mathrm{H}$, br s, lactam NH$), 9.33(1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH})$

Table 4. Spectral and physical data of compounds 12.

Compound No.	Yield (\%)	$[\alpha]_{1}^{22}$	$\begin{gathered} \text { IR (KBr) }(\mathrm{KBactam}) \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	${ }^{1} \mathrm{H}$ NMR (solvent) $\delta(J=\mathrm{Hz})$
12a	86	$\begin{aligned} & -16.7^{\circ} \\ & (c 0.5, \\ & 50 \% \mathrm{EtOH}) \end{aligned}$	1765	(DMSO- d_{6}); $1.90 \sim 2.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.73\left(2 \mathrm{H}, \mathrm{t}, J=7.5,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.90 \sim 4.15(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.38\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.17(1 \mathrm{H}, \mathrm{dd}, J=5.5,9,3-\mathrm{H}), 7.47(1 \mathrm{H}, \mathrm{s}$, thiazole$5 \mathrm{H}), 9.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9, \mathrm{CONH})$
12c	96	$\begin{gathered} -11.6^{\circ} \\ \left(c 1, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1770	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 1.21\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.70 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{q}, J=7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $2.68\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.30 \sim 4.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.41\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right)$, $5.40(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 7.48(1 \mathrm{H}, \mathrm{s}$, thiazole-5H)
12d	90	$\begin{gathered} -19.8^{\circ} \\ \left(c \mathrm{c}, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 2.00 \sim 2.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.40\left(2 \mathrm{H}, \mathrm{t}, J=7,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.96$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 4.40 \sim 4.65(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.43(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 7.40(1 \mathrm{H}$, s, thiazole-5 H)
12e	79	$\begin{gathered} -32.6^{\circ} \\ \left(c \mathrm{c}, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1760	(DMSO-d d_{6}) $1.80 \sim 2.30\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.90 \sim 4.15(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.00$ $\left(2 \mathrm{H}, \mathrm{t}, J=7,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.17(1 \mathrm{H}, \mathrm{dd}, J=5,9,3-\mathrm{H}), 6.46\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$, $7.43(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$), 9.42(1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH})$
12 f	94	$\begin{gathered} -41.5^{\circ} \\ \left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 2.00 \sim 2.60\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.15\left(2 \mathrm{H}, \mathrm{t}, J=7,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.36$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 4.40 \sim 4.65(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.41(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 6.85 \sim 7.10(3 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{H}), 7.20 \sim 7.40(2 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.40(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$)$
12g	85	$\begin{gathered} -30.5^{\circ} \\ (c 0.5,95 \% \\ \left.\mathrm{Me}_{2} \mathrm{CO}\right) \end{gathered}$	1760	$\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}-\mathrm{D}_{2} \mathrm{O}\right) ; 2.05 \sim 2.55\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.10 \sim 4.50(3 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}$ and $\left.4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.38\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.45(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 7.06(2 \mathrm{H}, \mathrm{d}, J=9$, aromatic $\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$), 8.13(2 \mathrm{H}, \mathrm{d}, J=9$, aromatic H)
12h	71	-	--	--
12i	86	$\begin{gathered} -27.0^{\circ} \\ \left(c 1, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 1.80 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 4.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.24(2 \mathrm{H}, \mathrm{t}, J=7$, $\left.4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.40 \sim 4.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.42(1 \mathrm{H}, \mathrm{d}, J=5,3-\mathrm{H}), 7.49(1 \mathrm{H}, \mathrm{s}$, thiazole-5H)
12j	87	$\begin{gathered} -26.1^{\circ} \\ \left(c \mathrm{c}, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1760	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 2.00 \sim 2.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 4.30 \sim 4.60(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 4.36\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.42(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 7.49(1 \mathrm{H}$, s, thiazole- 5 H)
12!	97	$\begin{gathered} -27.3^{\circ} \\ \left(c \cdot 1, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1770	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 1.90 \sim 2.60\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.18\left(2 \mathrm{H}, \mathrm{t}, J=6.5,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $4.30 \sim 4.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ClCH}_{2}\right), 5.37(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 7.54(1 \mathrm{H}, \mathrm{s}$, thiazole-5H)

-: Not measured.

Table 5. Spectral and physical data of compounds 13.

Compound No.	Yield (\%)	SI-MS (m / z)	$[\alpha]^{22}$	$\underset{\substack{\mathrm{IR}(\mathrm{KBr}) \\\left(\mathrm{cm}^{-1}\right)}}{\substack{\text { (Kactam }}}$	${ }^{1} \mathrm{H}$ NMR (solvent) $\delta(J=\mathrm{Hz})$
13a	64	$\begin{aligned} & 456(\mathrm{M}+\mathrm{Na})^{+} \\ & 434(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{array}{r} -18.0^{\circ} \\ \left(c \mathrm{c}, \mathrm{H}_{2} \mathrm{O}\right) \end{array}$	1765	($\mathrm{D}_{2} \mathrm{O}$) ; $2.00 \sim 2.60\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.74\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.00$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.45 \sim 4.65(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 6.98(1 \mathrm{H}$, s, thiazole-5H)
13c	72	$\begin{aligned} & 482(\mathrm{M}+\mathrm{Na})^{+} \\ & 460(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{gathered} -6.8^{\circ} \\ \left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 1.24\left(3 \mathrm{H}, \mathrm{t}, J=7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.80 \sim 2.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.59$ $\left(2 \mathrm{H}, \mathrm{q}, J=7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.69\left(2 \mathrm{H}, \mathrm{t}, J=7,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.30 \sim 4.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$)$
13d	83	$\begin{aligned} & 536(\mathrm{M}+\mathrm{Na})^{+} \\ & 514(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{array}{r} -18.6^{\circ} \\ \left(c 1, \mathrm{H}_{2} \mathrm{O}\right) \end{array}$	1765	($\mathrm{D}_{2} \mathrm{O}$) ; $2.00 \sim 2.60\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.43\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.92$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.40 \sim 4.70(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.42(1 \mathrm{H}, \mathrm{d}$, $J=5.5,3-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{s}$, thiazole-5H)
13e	74	$\begin{aligned} & 481(\mathrm{M}+\mathrm{Na})^{+} \\ & 459(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{gathered} -27.5^{\circ} \\ \left(c 0.2, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 1.90 \sim 2.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.16(2 \mathrm{H}, \mathrm{t}, J=$ $\left.6.5,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.35 \sim 4.55(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 6.96$ ($1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H)
13f	71	$\begin{aligned} & 514(\mathrm{M}+\mathrm{Na})^{+} \\ & 492(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{gathered} -21.0^{\circ} \\ \left(c 0.2, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1760	(DMSO- d_{6}); $1.85 \sim 2.45\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.90 \sim 4.20$ ($3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $4-\mathrm{CH}_{2} \mathrm{CH}_{2}$), $5.12(1 \mathrm{H}, \mathrm{dd}, J=5.5,9,3-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$), 6.75 \sim 6.95(3 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.05 \sim 7.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NH}_{2}\right.$ and aromatic H), $9.30(1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH})$
13g	45	$\begin{aligned} & 559(\mathrm{M}+\mathrm{Na})^{+} \\ & 537(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{gathered} -17.6^{\circ} \\ \left(c 0.3, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1780	(DMSO-d d_{6}) $1.90 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.05 \sim 4.40$ $\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5.19(1 \mathrm{H}, \mathrm{dd}, J=5,9,3-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$), 7.08(2 \mathrm{H}, \mathrm{d}, J=9$, aromatic H$), 7.14\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}_{2}\right), 8.14(2 \mathrm{H}$, d, $J=9$, aromatic H), $9.40(1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH})$
13h	63	$\begin{aligned} & 604(\mathrm{M}+\mathrm{Na})^{+} \\ & 582(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{gathered} -9.8^{\circ} \\ \left(c 0.2, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1765	(DMSO- d_{6}) ; $1.90 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.95 \sim 4.25$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.35 \sim 4.65\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5.13(1 \mathrm{H}, \mathrm{dd}, J=5.5,9,3-\mathrm{H})$, $6.72\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole-5H), $7.12\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.48(1 \mathrm{H}, \mathrm{d}, J=9$, aromatic H), $8.46(1 \mathrm{H}, \mathrm{dd}, J=3,9$, aromatic H$), 8.73(1 \mathrm{H}, \mathrm{d}, J=3$, aromatic H$), 9.32(1 \mathrm{H}$, d, $J=9, \mathrm{CONH}$)
13i	79	$\begin{aligned} & 480(\mathrm{M}+\mathrm{Na})^{+} \\ & 458(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{array}{r} -25.8^{\circ} \\ \left(c \mathrm{1}, \mathrm{H}_{2} \mathrm{O}\right) \end{array}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 1.90 \sim 2.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.98(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.24\left(2 \mathrm{H}, \mathrm{t}, J=6.5,4-\mathrm{CH}_{2} \mathrm{CH}\right), 4.35 \sim 4.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{d}$, $J=5.5,3-\mathrm{H}), 6.97(1 \mathrm{H}, \mathrm{s}$, thiazole $-5 \mathrm{H})$
13k	67	${ }^{2}$	$\begin{array}{r} -21.1^{\circ} \\ \left(c 1, \mathrm{H}_{2} \mathrm{O}\right) \end{array}$	1760	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 1.70 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.76\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.99$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.30 \sim 4.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.41(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 6.99(1 \mathrm{H}$, s, thiazole-5H)
131	20	a	$\begin{gathered} -30.1^{\circ} \\ \left(c 0.6, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1760	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 1.95 \sim 2.60\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.19(2 \mathrm{H}, \mathrm{t}, J=6.5$, $\left.4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.30 \sim 4.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.35(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{s}$, thiazole-5H)

[^2]with MeOH and ether to give $11 \mathrm{c}(65 \mathrm{mg}, 74 \%$) as a colorless powder.
Compounds 11d, 11f, 11g and 11h were similarly prepared and the results are shown in Table 3.
Method C: Procedure starting from 5-C; to an ice-cold solution of $5-\mathrm{C}(100 \mathrm{mg}, 0.26 \mathrm{mmol})$ in DMF (5 ml) were added pyridine ($31 \mathrm{mg}, 0.39 \mathrm{mmol}$) and acetyl chloride ($47 \mathrm{mg}, 0.6 \mathrm{mmol}$), and the mixture was stirred for 1 hour at $0 \sim 5^{\circ} \mathrm{C}$. After being stirred for 30 minutes at room temp, the solvent was evaporated to dryness. The residue was dissolved in EtOAc (10 ml) and cold 1 N HCl $(5 \mathrm{ml})$, and the organic layer was washed with brine, dried and concentrated under reduced pressure. The residue was washed with EtOAc to give $11 \mathrm{i}(90 \mathrm{mg}, 80 \%$) as a colorless powder.

Compound $\mathbf{1 1 j}$ was similarly prepared by treating $\mathbf{5 - C}$ with chloroacetyl chloride. The result is shown in Table 3.

Sodium (3S,4R)-3-[2-(2-Chloroacetamidothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-(2-substituted ethyl)-2-azetidinone-1-sulfonates (12)

A mixture of $11 \mathrm{a}(90 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot \mathrm{Py}(70 \mathrm{mg}, 0.44 \mathrm{mmol})$ in DMF (2 ml) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{ml})$ was stirred for 3 hours at $50^{\circ} \mathrm{C}$. The solvent was evaporated under reduced pressure, and the residue was chromatographed on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 100: 30: 5\right)$. The eluent was concentrated, and the residue was dissolved in water (3 ml) and treated with Dowex $50 \mathrm{~W}\left(\mathrm{Na}^{+}\right)$for 1 hour at room temp. After removal of the resin by filtration, the filtrate was lyophilized to give $\mathbf{1 2 a}$ ($95 \mathrm{mg}, 84 \%$), which was used in the next reaction without further purification.

Compounds $\mathbf{1 2 c} \sim \mathbf{1 2 j}$ and 1 were similarly prepared and the results are shown in Table 4.
Sodium (3S,4R)-3-[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-(2-substituted ethyl)-2-azetidinone-1-sulfonates (13)

To an ice-cooled solution of $12 \mathrm{a}(61 \mathrm{mg}, 0.12 \mathrm{mmol})$ in water (2 ml) was added sodium N-methyldithiocarbamate ($20 \mathrm{mg}, 0.15 \mathrm{mmol}$) and stirred for 90 minutes at room temp. The mixture was diluted with water (5 ml) and washed with ether. The aqueous solution was chromatographed on Diaion HP-20. Elution with water and $10 \% \mathrm{EtOH}$, followed by lyophilization, gave 13 a (45 mg , 86% as a colorless powder.
$13 \mathrm{c} \sim 13 \mathrm{i}, 13 \mathrm{k}$ and 13 I were similarly prepared and the results are shown in Table 5.
(3S,4R)-3-[2-(2-Triphenylmethylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-(2-hydroxy-ethyl)-2-azetidinone (14-A)

Compound 5 - $\mathrm{A}(1.85 \mathrm{~g}, 7 \mathrm{mmol})$ was hydrogenated in MeOH (20 ml) for 5 hours over 5% Pd-C $(100 \mathrm{mg})$ at room temp under a hydrogen atmosphere. The catalyst was filtered off and the filtrate was concentrated to dryness. The resulting crystals were treated with 2 -(2 -triphenylmethylamino-thiazol-4-yl)-(Z)-2-methoxyiminoacetic acid $(3.41 \mathrm{~g}, 7.7 \mathrm{mmol})^{4)}$, 1-hydroxybenzotriazole (0.95 g , 7 mmol) and dicyclohexylcarbodiimide ($1.45 \mathrm{~g}, 7 \mathrm{mmol}$) according to the similar method in preparation of $4-\mathrm{C}$ to give $14-\mathrm{A}^{*}(3.31 \mathrm{~g}, 85 \%)$ as a colorless powder.
(3S,4R)-3-[2-(2-Triphenylmethylaminothiazol-4-yl)-(Z)-2-(tert-butoxycarbonylmethoxyimino)ace-tamido]-4-(2-hydroxyethyl)-2-azetidinone (14-B)

Using 2-(2-triphenylmethylaminothiazol-4-yl)-(Z)-2-(tert-butoxycarbonylmethoxyimino)acetic acid $^{4)}$ in place of 2-(2-triphenylmethylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetic acid in the procedure described in preparation of $14-\mathrm{A}$ and $14-\mathrm{B}^{*}$ was synthesized. A colorless powder. Yield 88%.
(3S,4R)-3-[2-(2-Triphenylmethylaminothiazol-4-yl)-(Z)-2-(O-substituted oxyimino)acetamido]-4-(2-methanesulfonyloxyethyl)-2-azetidinone (15-A) and (15-B)

According to the procedure described in preparation of $6-\mathrm{A}$, compounds $15-\mathrm{A}$ and $15-\mathrm{B}$ were synthesized by treating 14-A and 14-B with methanesulfonyl chloride.
$15-A^{*}$: Yield 76%. A colorless powder.
15-B*: Yield 82%. A colorless powder.
(3S,4R)-3-[2-(2-Triphenylmethylaminothiazol-4-yl)-(Z)-2-(O-substituted oxyimino)acetamido-4-(2-iodoethyl)-2-azetidinone (16-A) and (16-B)

According to the procedure described in preparation of $\mathbf{8 a - A}$, compounds $\mathbf{1 6 - A}$ and $\mathbf{1 6 - B}$ were

Table 6. Spectral and physical data of compounds 17 and 18.

Compound No.	Yield (\%)	SI-MS (m / z)	$[\alpha]_{\mathrm{D}}^{22}$	$\begin{gathered} \mathrm{IR}(\mathrm{KBr}) \\ \beta \text {-lactam } \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	${ }^{1} \mathrm{H}$ NMR (solvent) $\delta(J=\mathrm{Hz})$
17a	80	-	$\begin{gathered} +7.1^{\circ} \\ (c 1, \mathrm{DMF}) \end{gathered}$	$\begin{aligned} & 2095\left(\mathrm{~N}_{3}\right), \\ & 1760 \end{aligned}$	$\left(\mathrm{CDCl}_{3}\right) ; 1.60 \sim 2.20\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.30 \sim 3.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $3.80 \sim 4.10(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.24(1 \mathrm{H}, \mathrm{dd}, J=5,8,3-\mathrm{H})$, $6.39\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH), $6.49\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole-5H), $7.27\left(15 \mathrm{H}, \mathrm{s}, \mathrm{Ph}_{3} \mathrm{C}\right), 7.42(1 \mathrm{H}$, br s, NH), 7.42 ($1 \mathrm{H}, \mathrm{d}, J=9, \mathrm{CONH}$)
17b	83	-	$\begin{gathered} +43.6^{\circ} \\ \left(c 0.2, \mathrm{CHCl}_{3}\right) \end{gathered}$	1760	$\left(\mathrm{CDCl}_{3}\right) ; 1.90 \sim 2.30\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.93\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.80 \sim$ $4.10(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.22(1 \mathrm{H}, \mathrm{dd}, J=5.5,7.5,3-\mathrm{H}), 6.48$ ($1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H), $6.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.26\left(15 \mathrm{H}, \mathrm{s}, \mathrm{Ph}_{3} \mathrm{C}\right), 7.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}), 7.69(1 \mathrm{H}, \mathrm{d}, J=7.5, \mathrm{CONH})$
17c	88	-	$\begin{gathered} +27.5^{\circ} \\ \left(c 0.6, \mathrm{CHCl}_{3}\right) \end{gathered}$	1760	$\left(\mathrm{CDCl}_{3}\right) ; 1.60 \sim 1.90\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.10 \sim 2.60\left(6 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and morpholine), $3.58(4 \mathrm{H}, \mathrm{t}, J=4.5$, morpholine), $3.85 \sim 4.10(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.99$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.35(1 \mathrm{H}, \mathrm{dd}, J=5.5,8.5,3-\mathrm{H}), 6.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.59(1 \mathrm{H}$, s , thiazole- 5 H$), 7.20(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{NH}), 7.26\left(15 \mathrm{H}, \mathrm{s}, \mathrm{Ph}_{3} \mathrm{C}\right), 7.77(1 \mathrm{H}, \mathrm{d}, J=8.5$, CONH)
17d	50	-	$\begin{gathered} +30.2^{\circ} \\ \left(c 0.2, \mathrm{CHCl}_{3}\right) \end{gathered}$	1760	$\left(\mathrm{CDCl}_{3}\right) ; 1.60 \sim 2.10\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.10 \sim 3.40$ $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.70 \sim 4.00(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.18(1 \mathrm{H}$, $\mathrm{dd}, J=5,8,3-\mathrm{H}), 6.33(1 \mathrm{H}, \mathrm{t}, J=5, \mathrm{NH}), 6.50(1 \mathrm{H}, \mathrm{s}$, thiazole-5H), $7.26(15 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Ph}_{3} \mathrm{C}\right), 7.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.04(1 \mathrm{H}, \mathrm{d}, J=8, \mathrm{CONH})$
17e	30	-	$\begin{gathered} +28.5^{\circ} \\ \left(c 0.2, \mathrm{CHCl}_{3}\right) \end{gathered}$	1755	$\left(\mathrm{CDCl}_{3}\right) ; 1.70 \sim 2.05\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.35 \sim 3.70\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $3.70 \sim 4.00(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.17(1 \mathrm{H}, \mathrm{dd}, J=5.5,7.5,3-\mathrm{H})$, $6.51\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole-5H), $6.95 \sim 7.80\left(23 \mathrm{H}, \mathrm{m}, \mathrm{Pa}_{3} \mathrm{C}, 3 \times \mathrm{NH}\right.$ and PhCO$), 7.86$ ($1 \mathrm{H}, \mathrm{d}, J=7.5, \mathrm{CONH}$)
18a	83	$\begin{aligned} & 463(\mathrm{M}+\mathrm{Na})^{+} \\ & 441(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{gathered} -27.5^{\circ} \\ \left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	$\begin{aligned} & 2100\left(N_{3}\right), \\ & 1760 \end{aligned}$	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 1.80 \sim 2.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.52\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.98$ $(3 \mathrm{H}, \mathrm{s}), 4.30 \sim 4.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{s}$, thiazole-5H)
18b	67	$\begin{aligned} & 479(\mathrm{M}+\mathrm{Na})^{+} \\ & 457(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{gathered} -9.1^{\circ} \\ \left(c 0.2, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1760	$\begin{aligned} & \left(\mathrm{D}_{2} \mathrm{O}\right) ; 2.05 \sim 2.60\left(2 \mathrm{H}, \mathrm{~m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.21\left(2 \mathrm{H}, \mathrm{t}, J=7.5,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.02 \\ & \left(3 \mathrm{H}, \mathrm{~s}, \mathrm{OCH}_{3}\right), 4.35 \sim 4.55(1 \mathrm{H}, \mathrm{~m}, 4-\mathrm{H}), 5.42(1 \mathrm{H}, \mathrm{~d}, J=5.5,3-\mathrm{H}), 6.97(1 \mathrm{H}, \\ & \text { s, thiazole- } 5 \mathrm{H}) \end{aligned}$
18c	62	$463(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} -9.0^{\circ} \\ \left(c 0.2, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 2.05 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.20 \sim 3.55\left(6 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and morpholine), $3.85 \sim 4.10\left(4 \mathrm{H}, \mathrm{m}\right.$, morpholine), $3.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.30 \sim 4.60$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.39(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 6.99(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$)$
18 d	51	$\begin{aligned} & 479(\mathrm{M}+\mathrm{Na})^{+} \\ & 457(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{gathered} -33.3^{\circ} \\ \left(c 0.2, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right), 1.80 \sim 2.30\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.30(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.5,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.30 \sim 4.50(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{d}$, $J=5.5,3-\mathrm{H}), 6.96(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$)$
18e	56	$\begin{aligned} & 541(\mathrm{M}+\mathrm{Na})^{+} \\ & 519(\mathrm{M}+\mathrm{H})^{+} \end{aligned}$	$\begin{gathered} -24.9^{\circ} \\ (c 0.2, \mathrm{MeOH}) \end{gathered}$	1770	(DMSO-d ${ }_{6}$); $1.80 \sim 2.10\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.20 \sim 3.60\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.95 \sim 4.15(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.13(1 \mathrm{H}, \mathrm{dd}, J=5.5,9,3-\mathrm{H})$, $6.70(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$), 7.10\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}_{2}\right), 7.30 \sim 7.55(3 \mathrm{H}, \mathrm{m}$, aromatic H), $7.70 \sim 7.90(2 \mathrm{H}, \mathrm{m}$, aromatic H$), 8.43(1 \mathrm{H}, \mathrm{t}, J=6, \mathrm{NH}), 9.23(1 \mathrm{H}, \mathrm{d}, J=$ $9, \mathrm{CONH}$)

Table 7. Spectral and physical data of compounds 20.

Compound No.	Yield (\%)	SI-MS (m / z)	$[\alpha]_{\text {d }}{ }^{2}$	$\begin{gathered} \hline \text { IR (KBr) } \\ \underset{\beta-\operatorname{lactam}}{\left(\mathrm{cm}^{-1}\right)} \end{gathered}$	${ }^{1} \mathrm{H}$ NMR (solvent) $\delta(J==\mathrm{Hz})$
20f-A	48	$452(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} +4.5^{\circ} \\ (c 1,50 \% \\ M \mathrm{OHH}) \end{gathered}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 1.95 \sim 2.45\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.15 \sim 3.45\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.98$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.35 \sim 4.55(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 6.97(1 \mathrm{H}, \mathrm{s}$, thiazole-5H)
20g-A	67	$466(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} +21.1^{\circ} \\ (\mathrm{c} 1, \mathrm{MeOH}) \end{gathered}$	1765	(DMSO- $\left.d_{3}\right)^{2} ; 1.80 \sim 2.20\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.83(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.85 \sim 4.15(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{dd}, J=6,8.5,3-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{s}$, thiazole-5H), $7.12\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 9.10\left(3 \mathrm{H}\right.$, br s, $\left.\mathrm{SCN} H\left(\mathrm{NH}_{2}\right)\right), 9.27(1 \mathrm{H}, \mathrm{d}$, $J=8.5$, CONH)
20h-A	63	$480(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} +21.8^{\circ} \\ (c 0.5,90 \% \\ \mathrm{MeOH}) \end{gathered}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 1.95 \sim 2.55\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.03\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 3.15 \sim 3.45(2 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.35 \sim 4.65(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{d}, J=$ $5.5,3-\mathrm{H}), 6.96(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$)$
20i-A	83	$478(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} +38.9^{\circ} \\ (\mathrm{c} 1, \mathrm{MeOH}) \end{gathered}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 2.00 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.15 \sim 3.45\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.92$ $\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.30 \sim 4.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.35(1 \mathrm{H}, \mathrm{d}$, $J=6,3-\mathrm{H}), 6.96(1 \mathrm{H}, \mathrm{s}$, thiazole-5H)
$20 \mathrm{j}-\mathrm{A}$ $20 \mathrm{k}-\mathrm{A}$	55 57	$492(\mathrm{M}+\mathrm{H})^{+}$ $455(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} +31.1^{\circ} \\ (c 1, \mathrm{MeOH}) \end{gathered}$	1765 1770	(DMSO- $\left.d_{6}\right)^{2} ; 1.80 \sim 2.20\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.85 \sim 4.15$ ($3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and NHCH_{2}), $5.05 \sim 5.35\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\mathrm{CH}=\mathrm{CH}_{2}$), $5.55 \sim 6.05$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.73(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$), 7.13\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 9.20(3 \mathrm{H}$, br s, $\left.\mathrm{SC}\left(\mathrm{NH}_{2}\right)=\mathrm{N} H \mathrm{CH}_{2}\right), 9.29(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{CONH})$
20k-A	57	$455(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} -15.1^{\circ} \\ \left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1770	($\mathrm{D}_{2} \mathrm{O}$) ; $2.30 \sim 2.80\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.35 \sim 4.60(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 4.85\left(2 \mathrm{H}, \mathrm{t}, J=8,4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5.40(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 6.96(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H), $8.10(2 \mathrm{H}, \mathrm{dd}, J=6.7,5$, pyridinium H$), 8.58(1 \mathrm{H}, \mathrm{t}, J=7.5$, pyridinium H$), 8.85(2 \mathrm{H}, \mathrm{d}, J=6$, pyridinium H$)$
20f-C	43	$496(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} +3.4^{\circ} \\ \left(c 1, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1770	($\mathrm{D}_{2} \mathrm{O}$); $2.05 \sim 2.45\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.10 \sim 3.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.35 \sim$ $4.55(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{COOH}\right), 5.40(1 \mathrm{H}, \mathrm{d}, J=5.5,3-\mathrm{H}), 7.04$ ($1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H)
20g-C	58	$510(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} +4.5^{\circ} \\ \left(c 1, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1770	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 2.00 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.10 \sim 3.40(2 \mathrm{H}, \mathrm{m}$, $\left.4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.35 \sim 4.55(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.65(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 2 \mathrm{COOH}), 5.37(1 \mathrm{H}, \mathrm{d}$, $J=5.5,3-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$)$
20h-C	48	$524(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} +8.7^{\circ} \\ \left(\mathrm{c} 1, \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	1770	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 2.00 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.01\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 3.10 \sim 3.40(2 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.35 \sim 4.55(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.65(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 2 \mathrm{COOH}), 5.39(1 \mathrm{H}$, d, $J=5.5,3-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{s}$, thiazole-5H)
20i-C	56	$522(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} +29.7^{\circ} \\ (c 1,50 \% \\ \mathrm{MeOH}) \end{gathered}$	1765	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 2.00 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.15 \sim 3.45\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.92$ $\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.40 \sim 4.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{COOH}\right), 5.39(1 \mathrm{H}$, d, 3-H), $7.09(1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H$)$
20j-C	50	$536(\mathrm{M}+\mathrm{H})^{+}$	$\begin{gathered} +2.7^{\circ} \\ (\mathrm{c} 1,50 \% \\ \mathrm{MeOH}) \end{gathered}$	1770	$\left(\mathrm{D}_{2} \mathrm{O}\right) ; 2.00 \sim 2.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.15 \sim 3.45\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.95 \sim$ $4.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}\right), 4.35 \sim 4.55(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{COOH}\right)$, $\left.5.20 \sim 5.45(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H} \text { and } \mathrm{CH}=\mathrm{CH})_{2}\right), 5.65 \sim 6.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.05$ ($1 \mathrm{H}, \mathrm{s}$, thiazole- 5 H)

[^3]synthesized by treating $15-\mathrm{A}$ and $15-\mathrm{B}$ with sodium iodide.
$16-\mathrm{A}^{*}$: Yield 92%. Colorless crystals. MP $157 \sim 159^{\circ} \mathrm{C}$ (dec).
$16-\mathrm{b}^{*}$: Yield 93%. A colorless powder.
(3S,4R)-3-[2-(2-Triphenylmethylaminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-(2-substituted ethyl)-2-azetidinones (17)

Method A: A mixture of $16-\mathrm{A}(330 \mathrm{mg}, 0.5 \mathrm{mmol})$ and sodium azide ($65 \mathrm{mg}, 1 \mathrm{mmol}$) in DMF (5 ml) was stirred for 2 days at $50^{\circ} \mathrm{C}$, and the solvent was evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and brine, and the separated organic solution was dried and concentrated under reduced pressure. The residue was washed with ether to give $17 \mathrm{a}(240 \mathrm{mg}, 80 \%$) as a pale yellow powder.

Compounds 17 b and 17 c were similarly prepared by using potassium thiocyanate and morpholine in place of sodium azide in method A, respectively. The physical data of $\mathbf{1 7 a}, \mathbf{1 7 b}$ and $\mathbf{1 7} \mathrm{c}$ are summarized in Table 6.

Method B: Compound $17 \mathrm{a}(120 \mathrm{mg}, 0.2 \mathrm{mmol})$ was hydrogenated in DMF (2 ml) for 90 minutes over 5% Pd-C (20 mg) at room temp under a hydrogen atmosphere. The catalyst was filtered off, and to the filtrate was added pyridine ($32 \mathrm{mg}, 0.4 \mathrm{mmol}$) and acetyl chloride ($31 \mathrm{mg}, 0.4 \mathrm{mmol}$) at $0 \sim 5^{\circ} \mathrm{C}$. After being stirred for 2 hours at the same temp, the mixture was concentrated under reduced pressure. The residue was subjected to preparative $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 10: 1\right)$ to give $\mathbf{1 7 d}(60 \mathrm{mg}$, 50%) as a colorless powder.

Compound 17 e was similarly prepared by using benzoyl chloride in place of acetyl chloride in method B. The physical data of $\mathbf{1 7 d}$ and 17 e are shown in Table 6.

Sodium (3S,4R)-3-[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-(2-substituted ethyl)-2-azetidinone-1-sulfonates (18)

General Procedure I: Sulfonation and removal of the triphenylmethyl group: A mixture of compound $17(0.1 \sim 0.2 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot \mathrm{Py}(0.5 \sim 1 \mathrm{mmol})$ in DMF $(1 \sim 2 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \sim 2 \mathrm{ml})$ was stirred for $3 \sim 5$ hours at $50^{\circ} \mathrm{C}$, and the solvent was evaporated to dryness. The residue was chromatographed on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 10: 1\right)$ to give a crude sulfonated product, which was subsequently dissolved in $80 \% \mathrm{AcOH}(4 \mathrm{ml})$ and the mixture was stirred for 2 hours at $50^{\circ} \mathrm{C}$. The mixture was concentrated under reduced pressure. The concentrate was diluted with water (5 ml), and adjusted to $\mathrm{pH} 7.5 \sim 8.0$ with NaHCO_{3} (this procedure was omitted in the case of 17 c). The solution was washed with ether, and the aqueous solution was chromatographed on Diaion HP-20. Elution with water, $5 \% \mathrm{EtOH}$ and $10 \% \mathrm{EtOH}$, followed by lyophilization, afforded 18 as a colorless powder. The results are shown in Table 6.

Sodium ($3 S, 4 R$)-3-[2-(2-Aminothiazol-4-yl)-(Z)-2-(O-substituted oxyimino)acetamido]-4-(2-iodo-ethyl)-2-azetidinone-1-sulfonate (19-A) and (19-B)

Compounds $19-\mathrm{A}$ and $19-\mathrm{B}$ were similarly prepared from $16-\mathrm{A}$ and $16-\mathrm{B}$ by a general procedure I.
19-A*: A colorless powder. Yield 58%.
19-B*: A colorless powder. Yield 61%.
(3S,4R)-3-[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-[2-(substituted isothiuronio)-ethyl]-2-azetidinone-1-sulfonates (20-A)

General Procedure II: To a solution of $19-\mathrm{A}(105 \mathrm{mg}, 0.2 \mathrm{mmol})$ in EtOH (3 ml) and DMF (0.5 ml) was added thiourea (1 mmol), and the mixture was stirred for 2 days at $50^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure, and the residue was chromatographed on Diaion HP-20 after dissolving in water (2 ml). Elution with water, $5 \%, 10 \%$, and $20 \% \mathrm{EtOH}$, followed by lyophilization, afforded 20-A as a colorless powder. The results are shown in Table 7.

Compound 20k-A was prepared from 19-A by using pyridine in place of thiourea in general procedure II, and the result is shown in Table 7.
(3S,4R)-3-[2-(2-Aminothiazol-4-yl)-(Z)-2-(carboxymethoxyimino)acetamido]-4-[2-(substituted iso-thiuronio)ethyl]-2-azetidinone-1-sulfonates (20-C)

General Procedure III: Treatment of $\mathbf{1 9 - B}(125 \mathrm{mg}, 0.2 \mathrm{mmol})$ with thiourea (1 mmol) by general
procedure II gave $\mathbf{2 0 - B}$, which was dissolved in $99 \% \mathrm{HCOOH}(3 \mathrm{ml})$ and the mixture was stirred for 90 minutes at $50^{\circ} \mathrm{C}$. After removal of the solvent, the residue was chromatographed on Diaion HP20. Elution with water, $3 \%, 5 \%$ and $10 \% \mathrm{EtOH}$, followed by lyophilization, afforded $20-\mathrm{C}$ as a colorless powder. The results are shown in Table 7.

Acknowledgment

We wish to express our thanks to Mr. K. Shizukuish of the Application Laboratory, Naka Works, Hitachi, Ltd., for recording SI-MS, and to Mr. K. Tsuneda of the Analytical Center, Teikoku Hormone Mfg. Co., Ltd., for recording NMR and MS spectra and elemental analyses. Thanks are also due to Drs. H. Mori and K. Yasuda, Research Laboratory, Teikoku Hormone Mfg. Co., Ltd., for helpful discussions.

References

1) Yamashita, H.; N. Minami, K. Sakakibara, S. Kobayashi \& M. Ohno: Synthesis of 4-(methoxyethyl) monobactams by chemicoenzymatic approach. Chem. Pharm. Bull. in press, 1987
2) Mitsunobu, O.: The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis 1981: 1~28, 1981
3) Ochiai, M.; A. Morimoto, T. Miyawaki, Y. Matsushita, T. Okada, H. Natsugari \& M. Kida: Synthesis and structure-activity relationships of 7β-[2-(2-aminothiazol-4-yl)acetamido]cephalosporin derivatives. V. Synthesis and antibacterial activity of 7β-[2-(2 -aminothiazol-4-yl)-2-methoxyiminoacetamido]cephalosporin derivatives and related compounds. J. Antibiotics 34: 171~185, 1981
4) Yoshida, C.; K. Tanaka, Y. Todo, R. Hattori, Y. Fukuoka, M. Komatsu \& I. Saikawa: Studies on monocyclic β-lactam antibiotics. IV. Synthesis and antibacterial activity of ($3 S, 4 R$)-3-[2-aminothiazol-4-yl)-(Z)-2-(O-substituted oxyimino)acetamidol-4-methyl-1-($1 H$-tetrazol-5-yl)-2-azetidinones. J. Antibiotics 39: 90~100, 1986
5) Sykes, R. B.; D. P. Bonner, K. Bush \& N. H. Georgopapadakou: Aztreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic Gram-negative bacteria. Antimicrob. Agents Chemother. 21: 85~92, 1982
6) SendaI, M.; S. Hashiguchi, M. Tomimoto, S. Kishimoto, T. Matsuo, M. Kondo \& M. Ochial: Chemical modification of sulfazecin. Synthesis of 4 -(substituted methyl)-2-azetidinone-1-sulfonic acid derivatives. J. Antibiotics 38: 346~371, 1985
7) Yoshida, C.; K. Tanaka, R. Hattori, Y. Fukuoka, M. Komatsu, S. Kishimoto \& I. Saikawa: Studies on monocyclic β-lactam antibiotics. V. Synthesis and antibacterial activity of 3-[2-(2-aminothiazol-4-yl)(Z)-2-(O-substituted oxyimino)acetamido]-1-($1 H$-tetrazol-5-yl)-2-azetidinones having various functional groups at C-4 position of β-lactam. J. Antibiotics 39: 215~229, 1986
8) Shibuya, M.; Y. Jinbo \& S. Kubota: Synthesis of 3-acylamino-4-hydroxymethyl-2-oxo-1-sulfoazetidines and related compounds. Chem. Pharm. Bull. 32: 1303~1312, 1984
9) Japan Society of Chemotherapy: Determination method of MIC. Chemotherapy 29: 76~79, 1981 (in Japanese)
10) Nefkens, G. H. L.; G. I. Tesser \& R.J.F. Nivard: Simple preparation of phthaloylamino acids via a mild phthaloylation. Recl. Trav. Chim. Pays Bas 79: 688, 1960

[^0]: ${ }^{2}$ Penicillinase producing strain, ${ }^{\mathrm{b}}$ Cephalosporinase producing strain.

[^1]: * It's IR and NMR spectra supported the structure.

[^2]: a $(\mathrm{M}+\mathrm{Na})^{+}$and $(\mathrm{M}+\mathrm{H})^{+}$peaks were not observed.

[^3]: a Methylene signal of the $\mathrm{C}-4$ substituent overlapped with that of water in the DMSO- d_{6}.

